

What are Nitazenes?

Nitazenes (2-benzylbenzimidazoles) are a novel class of highly potent synthetic opioids that have recently emerged on the recreational drug market. Isotonitazene was the first to be notified to the European **Monitoring Centre for Drugs and Drug Addiction (EMCDDA) in August** 2019, following a test purchase from an online vendor. However. it is believed to have been available on the European drug market since April 2019. Since then, several other analogues have appeared.

Whilst new to the recreational market, the origin of nitazenes can actually be traced back to the mid-1950's. They were first developed in a search for alternatives to morphine, although they were never clinically approved due to increased risk of adverse

Presentation and route of administration

Nitazenes can be administered orally as powder, tablets or solution. They can also be administered intranasally by snorting or sublingually via spray. They can be inhaled by 'vaping', smoking or vaporising the 'free base', and injected.

Isotonitazene has been identified in counterfeit hydromorphone tablets in Canada. It has also been used to fortify heroin. Metonitazene has been identified in oxycodone tablets.

Physical, mental and behavioural effects

EUPHORIA

International legal controls

Etonitazene and clonitazene, are long standing inclusions in schedule I of the 1961 Single Convention on Narcotic Drugs because of their 'morphine-like' effects. In April 2021, at the 64th session of the Committee on Narcotic Drugs (CND), a vote was made to also add isotonitazene, following the earlier recommendations made by the 43rd Expert Committee on Drug Dependence (ECDD). Metonitazene was reviewed by the 44th ECDD in October 2021 and a recommendation was put forward to add it to the 1961 Convention. This recommendation was accepted at the 65th CND meeting, which took place in March 2022 and came into force in November 2022. At the 66th Session of the CND in March 2023, three further nitazenes were added to schedule I of the Single Convention on Narcotic Drugs of 1961, as amended by the 1972 Protocol; protonitazene, etazene, and etonitazepyne.

Isotonitazene was rapidly controlled in the US through the temporary emergency scheduling procedure in August 2020. It was subsequently added to the Controlled Substances Act (CSA) in June 2021. In December 2021, the DEA gave notice of its intention to place a further seven nitazene variants under temporary control for a period of 2 years; butonitazene, etodesnitazene, flunitazene, metodesnitazene, metonitazene, etonitazenyne, protonitazene.

The Canadian Controlled Drugs and Substances Act, schedule 1, part 13, includes a general statement relating to benzimidazoles and their derivatives, including etonitazene and clonitazene, which is interpreted as capturing other nitazene variants.

In the UK, etonitazene and clonitazene are listed as Class A drugs in the Misuse of Drugs Act 1971 and in schedule 2 of the Misuse of Drugs Regulations 2001. On 18th July 2022 the Advisory Council on the Misuse of Drugs (ACMD) recommended these be moved to schedule 1 as they have no medical use. Furthermore, they recommended that the following also be added as Class A, schedule 1 drugs; metonitazene, protonitazene, isotonitazene, butonitazene, flunitazene, metodesnitazene, etodesnitazene, N-pyrrolidino-

etonitazene, N-piperidinyl-etonitazene and brorphine. The ACMD recommendations were accepted by Government in February 2023 and will be implemented when Parliamentary time allows.

In July 2021 Germany adopted a generic control on 2-benzyl benzimidazole synthetic opioids, adding them to the Neue psychoktive Stoffe Gesetz (NpSG). A new amendment to Schedule 2 of the Betäubungsmittelgesetz (BtMG) (Narcotics Act) at the begining of 2023 included metonitazene.

Japan included isotonitazene in the Shitei Yakubutsu (designated substances) legislation in November 2020 and metonitazene in October 2021. Several other countries have taken steps to regulate new and emerging nitazenes. Updates so far in 2023 include - but are not necessarily limited to - the following;

Austria: Metonitazene was included in a new amendment to the Narcotic Regulations.

Belgium: Metonitazene was added to annex IA and etonitazepipne, etodesnitazene and protonitazene to annex IVB.

Brazil: Metonitazene was added to list F1.

Denmark: Etonitazepyne was added to list B.

Norway: In February 2023 a consultation was initiated regarding the proposal to enter a new generic group for nitazenes on the drug list.

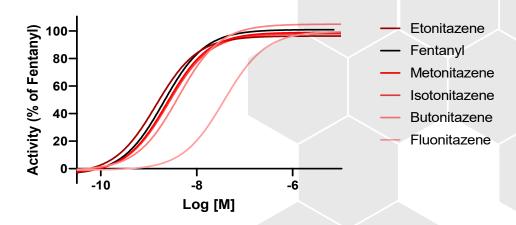
Sweden: Butonitazene, flunitazene and metodesnitazene were added to the list of narcotics.

Switzerland: Effective from March 2023 isotonitazene and metonitazene were added to directory D. Subsequently etonitazepipne was added to directory E.

The NPS REFORM project

New Psychoactive Substances - REferences for the FORensic Market

Despite the presently available Reference Materials (RM) for New Psychoactive Substances (NPS), the rate of emergence of new compounds significantly outpaces the development of counterpart RM for efficient monitoring and testing of these substances – especially for new and extremely potent NSOs, and the synthetic cannabinoid receptor agonists (SCRAs).


NPS Reform – a collaborative Eurostars project between Chiron and Linköping University (LiU) - tackles this problem by developing platforms and proactive methods to predict and monitor the flow of potent NPS onto the market more easily. Using a Predictive Parallel Production Platform (P4), novel reference materials are produced quicker, more efficiently, simultaneously and at a larger scale. By targeting reported NPS, and those which will likely appear in the market based on chemical similarities the platform predicts new compounds and using the parallel synthesis of similar analogous, numerous compounds such as the nitazene analogous presented here can easily be made available with short lead times.

For several compounds, and especially for urine methods, RM for unique and abundant metabolite markers are

needed. The second project goal is therefore to improve our understanding of the NPS metabolism – aiming for early identification of metabolites originating from novel drugs of abuse. In many cases, especially for SCRAS, the parent NPS substance cannot be detected in urine and the intake must be proven based on metabolite findings, which also sometimes have extended detection windows as they remain longer in the body. Rapid metabolism studies using human hepatocytes and authentic urine samples identifies potential markers, which are then synthesized using the P4 strategy to also address analogues. Thus, also making RM for unique urine markers more swiftly available.

One of the hazards working with NPS is the unknown potency, especially of NSOs. The final major objective of the NPS reform project is therefore to identify the potency and efficacy of the emerging compounds. Using swift in vitro assays for the activation of the μ -opioid and CB1 receptors, the project also produces safety data for especially NSOs. Figure 1 shows the potency and efficacy of some of the nitazene analogous: etonitazene, metonitazene, isotonitazene, butonitazene and fluonitazene (in order of potency – high to low) produced by the project in relationship to fentanyl.

Figure 1.Dose-response curve for nitazenes relative to fentanyl.

Courtesy of Prof. Henrik Green, Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden

Chiron No.	Name	Structure	CAS
14877.24	Butonitazene (Butoxynitazene)	O ₂ N N	95810-54-1
14454.20	Clonitazene hydrochloride (C193901)	O ₂ N HCI	2053-24-9
14321.22	Etazene hydrochloride (Etodesnitazene hydrochloride)	N HCI	1071546-16-1
14195.22	Etonitazene hydrochloride (NIH 7607)		2053-25-0
14971.22	N-Pyrrolidino Etonitazene (Etonitazepyne)		2785346-75-8
15581.23	N-Piperidinyl Etonitazene (Etonitazepipne)		N/A Coming Soon

Chiron No.	Name	Structure	CAS
14455.20	Fluonitazene hydrochloride (Flunitazene hydrochloride)	O ₂ N HCI	2728-91-8
14118.23	Isotonitazene	O ₂ N	14188-81-9
15270.23	Isotonitazene hydrochloride		119276-00-5
14970.23	5-Aminoisotonitazene	H ₂ N N	2732926-25-7
15460.21	N-desethyl Isotonitazene hydrochloride	O ₂ N HCI	2732926-24-6 (free base)

Chiron No.	Name	Structure	CAS
15845.20	4'-hydroxy Nitazene (O-desalkyl Isotonitazene)	O ₂ N N	94758-81-3
14453.21	Metodesnitazene hydrochloride	N HCI	1071546-40-1
14456.21	Metonitazene hydrochloride	O ₂ N HCI	3983-24-2
15566.27	N-Pyrrolidino Metonitazene citrate (Metonitazepyne citrate)		N/A Coming Soon
14621.23	Protonitazene hydrochloride (Pronitazene hydrochloride)	O ₂ N HCI	119276-01-6
15846.18	4'-hydroxy N-desethyl Nitazene (N-Desethyl O-desalkyl protonitazene)	O ₂ N NH	N/A Coming Soon

Chiron No.	Name	Structure	CAS
15565.23	N-Pyrrolidino Protonitazene (Protonitazepyne)		N/A Coming Soon

Nitazene Mixes

ISO 17034 ISO/IEC 17025 ACCREDITED PRODUCER

S-5450-100-AN

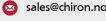
Nitazene Mix 1: 10 components in 1 mL acetonitrile

Chiron No.	Name	CAS	Concentration
14877.24	Butonitazene (Butoxynitazene)	95810-54-1	
14454.20	Clonitazene hydrochloride	2053-24-9	
14321.22	Etazene hydrochloride (Etodesnitazene HCI)	1071546-16-1	
14195.22	Etonitazene hydrochloride	2053-25-0	
14971.22	N-Pyrrolidino Etonitazene (Etonitazepyne)	2785346-75-8	100 ug basa/ml pash
14455.20	Fluonitazene hydrochloride (Flunitazene HCl)	2728-91-8	100 μg base/mL each
14118.23	Isotonitazene	14188-81-9	
14453.21	Metodesnitazene hydrochloride	1071546-40-1	
14456.21	Metonitazene hydrochloride	3983-24-2	
14621.23	Protonitazene hydrochloride (Pronitazene HCl)	119276-01-6	

References

- A Forward-Thinking Approach to Addressing the New Synthetic Opioid 2-Benzylbenzimidazole Nitazene Analogues by Liquid Chromatography Tandem Quadrupole Mass Spectrometry (LC-QQQ-MS). Sara E Walton et al. J Anal Toxicol. 2022 Apr; 46(3): 221–231. Published online 2021 Nov 18. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8935987/
- Synthesis, Chemical Characterization, and μ-Opioid Receptor Activity Assessment of the Emerging Group of "Nitazene"
 2-Benzylbenzimidazole Synthetic Opioids. Marthe M Vandeputte et al. ACS Chem Neurosci 2021 Apr 7;12(7):1241-1251. Epub 2021 Mar 24. https://pubs.acs.org/doi/10.1021/ acschemneuro.1c00064.
- United Nations Office on Drugs and Crime. Global SMART update 2020: the growing complexity of the opioid crisis. Accessed June 21, 2021. https://www.unodc.org/documents/scientific/Global_SMART_Update_2020-Vol.24-Eng-Final.pdf

- Canada, Municipal Government of Halifax, Police warn public of potent synthetic opioid found in Halifax (March 2020). https://www.halifax.ca/home/news/police-warn-public-potent-synthetic-opioid-found-halifax
- Welsh Emerging Drugs and Identification of Novel Substances (Wedinos). Accessed August 28, 2022. https://www.wedinos.org/sample-results
- 6. ACMD advice on 2-benzyl benzimidazole and piperidine benzimidazolone opioids (accessible version). Published 18 July 2022. <a href="https://www.gov.uk/government/publications/acmd-advice-on-2-benzyl-benzimidazole-and-piperidine-benzimidazolone-opioids/acmd-advice-on-2-benzyl-benzimidazole-and-piperidine-benzimidazolone-opioids-accessible-version#recommendations



Your quality is our business

Chiron AS | Stiklestadveien 1 | N-7041 | Trondheim | Norway

