



# 2-Methyl and 3-methyl hopanes

Three kind of C31 methylhopanes have been identified as constituents of ancient sediments and oils. These are  $2\alpha$ -,  $2\beta$ -, and  $3\beta$ -methylhopanes.





8632.31: 2β,17α(H),21ß(H)-2-Methylhopane

H H H H H H

| 8629.31: 3β,17α(Η),21β(Η)-3 | -Methylhopane |
|-----------------------------|---------------|
|-----------------------------|---------------|

## Available methylhopans from Chiron:

|              | 2-Methylhopanes                                                                 |  |
|--------------|---------------------------------------------------------------------------------|--|
| 8632.31-10UG | 2β,17α(H),21ß(H)-2-Methylhopane                                                 |  |
| 9077.31-10UG | 2α+2β,17α(H),21ß(H)-2-Methylhopane<br>(ca 1:3)                                  |  |
|              | 3-Methylhopanes                                                                 |  |
| 8628.31-10UG | 3β,17α(H),21α(H)-3-Methylhopane                                                 |  |
| 8629.31-10UG | 3β,17α(H),21ß(H)-3-Methylhopane                                                 |  |
| 8630.31-10UG | 3β,17β(H),21α(H)-3-Methylhopane (purity 93%)                                    |  |
| 8631.31-10UG | 3β,17β(H),21ß(H)-3-Methylhopane                                                 |  |
| 3541.6-KIT   | 2- and 3-Methylhopanes Kit<br>(8632.31,9077.31,8628.31,8629.31,8630.31,8631.31) |  |

All methylhopanes are supplied as approx. 10  $\mu$ g in convenient 300 $\mu$ L GC-vials for dilution to e.g. 50-100 $\mu$ g/mL (qualitative standard). If not otherwise stated the purity is >95%.



### **Origin of methylhopanes**

Triterpanoids from the hopane family isolated from living organisms ("biohopanoids") are typically derived from the C30 17 $\beta$ ,21 $\beta$  framework. They are the precursors of the many hopanoids encountered in sediments ("geohopanoids") which often possesses the thermodynamically more stable 17 $\alpha$ ,21 $\beta$  configuration and to a lesser extent 17 $\beta$ ,21 $\alpha$ . Methylhopanes are typically present at between 2 and 10% of the abundance of hopanes in oils and rock sources.<sup>1,2,3</sup>

Minor members possessing an additional methyl group attached at position  $2\beta$  (axial position) or  $3\beta$  (equatorial position) of the  $17\beta$ , $21\beta$  skeleton have also been isolated from a few bacteria. These are the assumed precursors of the 2-methyl and 3-methyl hopanoids. Because the equatorial alkyl groups are thermodynamically most stable, the fossil hopanes are mixtures dominated by  $2\alpha$ (Me) and  $3\beta$ (Me).

In the case of 3-methylhopanoids, only  $3\beta(Me)$  have been encountered, whereas a mix of  $2\alpha(Me)$  and  $2\beta(Me)$  appeared in younger sediments. In more mature sediments, only the  $2\alpha(Me)$  isomers

### Chromatographic behavior of methylhopanes

Both of the 2-methylhopanes elutes with similar retention time on an non-polar Ultra-1 column. The  $2\beta$ -methylhopane virtually coelutes with hopane, while  $2\alpha$ -methylhopane elutes on the trailing side and is incompletely resolved from hopane.

The 3 $\beta$ -methylhopane elutes with a significantly longer retention time and at a point midway between (22R)-17 $\alpha$ (H),21 $\beta$ (H)-homohopane and (22R+22S)-17 $\beta$ (H),21 $\alpha$ (H)-homohopanes. On a moderately polar BP-10 column, the 2 $\beta$ -methylhopane just preceded 2 $\alpha$ -methylhopane and both eluted before 17 $\alpha$ (H),21 $\beta$ (H)-hopane. This observation of a reversal in relative elution positions of hopanes and methylhopanes on columns of different polarities reduces the chance of error in compound identification.<sup>4</sup>

| 100<br>RI | (b) $2\alpha(Me) - \alpha\beta$<br>$C_{31}$<br>$426 \rightarrow 205$<br>13.5<br>$-2\beta(Me)$<br>$\alpha\beta$<br>$-2\beta(Me)$<br>$\alpha\beta$<br>$-2\beta(Me)$<br>$\alpha\beta$ | -βα<br>22S+R |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 0         | 13.5 1 ap                                                                                                                                                                          |              |

#### Literature:

1) P Stampf *et al*: 2α-Methylhopanoids: First recognition in the Bacterium *Methylobacterium organophilum* and obtention via sulphur induced isomerization of 2β-methylhopanoids; Tetrahedron, Vol 47, No 34, pp 7081-7090, 1991

2) R.E . Summons and L.L. Jahnke: Identification of the methylhopanes in sediments and petroleum; Geochimica et Cosmochimica Acta, vol 54, pp 247-251, 1990

3) Farrimond P., Talbot H.M., Watson D.F., Schulz L.K. and Wilhelms A. (2004). Methylhopanoids: Molecular indicators of ancient bacteria and a petroleum correlation tool. Geochim. Cosmochim. Acta 68, 3873-3882.

4) Biological markers in sediments and petroleum, J.M. Moldowan *et al (editors), p. 182-200, Englewood Cliffs, New Jersey (1992), Prentice Hall*