

C30 Hopanes

CHIRON CHIRON

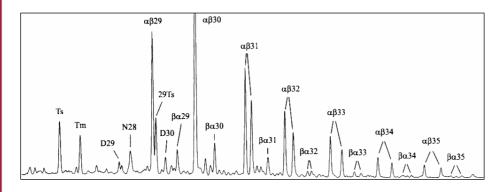
Occurrence and origin:

Beside Norhopanes (C29, see BMF 7) C30 hopanes are the most common hopanes of **sedimentary matter**. The origin of the hopanes is the most abundant hopanoid in prokaryotes, C35 tetrahydroxybacteriohopane.

Cat. No. 0132.30 $17\alpha(H),21\beta(H)$ -Hopane $(30\alpha\beta)$

Geochemical relevance and use in oil spill analysis

Hopanes play an important role in **geochemical investigations**, and are diagnostic biomarker indicators and useful as proof of the origin in **oil spill analysis**, **oil waste analysis** and **analysis of airborne particulates**. They contribute to the so-called terpane fingerprint and are commonly used to relate oils with source rocks.


There are **4 common isomers** of C30-hopanes. The most common are isomers with variable stereochemistry at the 17 and 21 positions, either $\beta(H)$ with hydrogen above the plane or α -(H) with the hydrogen below the plane.

The natural isomer $\beta\beta$ (17 β (H),21 β (H)) may be found in recent sediments. However, the $\alpha\beta$ -isomer is always the dominant in mature sediments, while smaller amounts of the $\beta\alpha$ - isomer are present. Only minor quantities of the less stable $\alpha\alpha$ -isomer are present. Thus, the $\beta\beta$ - and the $\alpha\alpha$ -isomers are useful internal standards as they normally do not co-elute with other hopanes or triterpenoids in mature sediment.

The $\beta\alpha$ -isomers (moretanes) are highly specific for **immature to early oil generation**. The moretanes are thermally less stable than the $\alpha\beta$ -hopanes, and abundances of the C29 and C30 moretanes decrease relatively to the corresponding hopanes with thermal maturity. The ratio of $\beta\alpha$ -moretanes to their corresponding $\alpha\beta$ -hopanes decrease with thermal maturity from ca. 0,8 to <0,15. The moretane/hopane ratio is used most commonly for C30, but it is also quantified using C29.

In **fresh oil spills**, the $\alpha\beta$ -isomer of hopane is considered to be non-biodegradable and conserved. Consequently, it can be used as an internal standard to monitor the amount of total oil removed by bioremediation (treatment by oil-degrading bacteria).

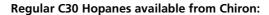

The hopanes elute on a normal nonpolar GC-column in the order; $\alpha\beta$ -, $\beta\alpha$ -, $\alpha\alpha$ -, $\beta\beta$. The C30 gammacerane (Cat. No. 2646.30) elutes late and in the region **between** the **C31 22R (1339.31) and C32 22S (1338.31) isomers** while the oleanane isomers (α and β , Cat. No. **0617.30** and **0618.30**) co-elutes with lupane between $\beta\alpha$ 29 and $\alpha\beta$ 30.

Figure: GC-MS of Mona-2 Oil, Danish North Sea (Courtesy of Peter Nytoft, GEUS, Denmark)

 5β (H)-17α(H),21β(H)-Hopane (mix. with 0132.30) ca. 5 μg neat

- 5-10 μg neat are supplied in convenient 300μL GC-vials for dilution to e.g. 50-100μg/mL
- 50 and 100 µg/mL are supplied in isooctane (1 mL ampoules)
- Quantities are measured relative to the intensity (TIC) of $30\alpha\beta$ hopane or by gravimetry

2888.30-50-IO	$17\alpha(H),21\alpha(H)$ -Hopane	50 μg/ml
0132.30-100-IO	$17\alpha(H),21\beta(H)$ -Hopane	100 μg/ml
0612.30-100-IO	$17\beta(H),21\alpha(H)$ -Hopane (moretane)	100 μg/ml
0613.30-100-IO	$17\beta(H),21\beta(H)$ -Hopane (hopane)	100 μg/ml

Other C30 Hopanes

2179.30-50-IO	$17\alpha(H)$, $21\alpha(H)$ -30-Nor-29-methylhopane	50 μg/ml
2262.30-50-IO	$17\alpha(H)$, $21\beta(H)$ -30-Nor-29-methylhopane	50 μg/ml
2886.30-5UG	$17\alpha(H)$ -30-Diahopane (D30)	ca. 5 µg neat
2884.30-5UG	$17\beta(H),21\alpha(H)-22$ -Methyl-28-nor-spergulane	ca. 5 µg neat
9958.30-5UG	$8\alpha,9\beta,10\alpha(H),14\beta(H),17\alpha(H),21\beta(H)$	ca. 5 µg neat
	5,9-Dimethyl-25,27-bisnorhopane	
9960.30-5UG	$5\beta(H)-17\alpha(H),21\beta(H)$ -Hopane (mix. with 0132.30)	ca. 5 µg neat

Other C30 Triterpanes

2646.30-10UG	Gammacerane	ca. 10 µg neat
0617.30-100-IO	18α(H)-Oleanane	100 μg/ml
0618.30-100-IO	18β(H)-Oleanane	100 μg/ml
0619.30-100-IO	Friedelane (91%)	100 μg/ml
0616.30-100-IO	Lupane	100 μg/ml
0620.30-100-IO	Onocerane I (84%)	100 μg/ml
0621.30-100-IO	Onocerane II (13% in mix. With Onocerane I)	100 μg/ml
1192.30-100-IO	20R/20S-Dammarane	100 ug/ml

Bicadinanes

9953.30-10UG	Bicadinane W	ca. 10 µg neat
9952.30-50-IO	Bicadinane T	50 μg/ml
9951.30-10UG	Bicadinane R	ca. 10 µg neat
9954.30-10UG	Bicadinane MeT	ca. 10 µg neat

Olenanane degradation products: All ca. 5 µg neat

8792.30-5UG	C30 Pentacyclic triterpane I (or X); 2,2,5-Trimethyl-A'-neo-23,24,25-trinorgammacerane
8793.30-5UG	C30 Pentacyclic triterpane II (or Y); 3,5-Dimethyl- $(3\alpha-4\beta,5\beta,18\alpha)$ -24,25-dinoroleanane
8794.30-5UG	C30 Pentacyclic triterpane III (or Z); Ring A spiro oleanane;
	Methyl- 3β , 4α , 10α , 18α)-1,5-cyclo-24-nor-1,10-seco-oleanane
8795.30-5UG	Seco-18α(H)-oleanane B2; 17,18-trans-8,14-seco-oleanane
8796.30-5UG	Seco-18β(H)-oleanane A2-2; 17,18-cis-8,14-seco-oleanane
8797.30-5UG	Seco-oleanane A2-1

Other relevant Biomarker Focuses:

Norhopanes: Biomarker Focus 7

Rearranged hopanes: Biomarker Focus 35

2-Methyl and 3-Methylhopanes: Biomarker Focus 37 Homohopanes and gammacerane: Biomarker Focus 38

References:

- 1. K.E.Peters, C.C. Walters and J.M. Moldowan, The biomarker guide, 2. ed. Vol. 1&2, Cambridge University Press, Cambridge 2005.
- 2. Daling, Faksness, Hansen, and Stout, Environmental Forensics, 2002; 3, 263.
- 3. cf: http://www.nordicinnovation.net/nordtestfiler/tec498.pdf .
- 4. Wang and Fingas, Marine Pollution Bulletin, 2003; 47, 423, and references therein.
- 5. Nytoft and Bojesen-Koefoed, Organic Geochemistry, 2001; 32, 841.
- 6. J.R. Brook et.al., Atmospheric environment, 2007; 41, 119-135.