

Catalogue No.: S-4513-K-T No. Compounds: 16

> CHIRON Deuterated IS All-in-

1000 µg/mL in toluene For research and analytical Chiron AS

Stiklestadveien

Your Quality is our **Business**

Petroleum

Your quality is our business

Toxicology

Food safety

Environment

New generation of reference standards for chlorinated paraffins The Eurostars CHLOFFIN, the EU GreenREF and REVAMP projects

Huiling Liu¹, Solveig Valderhaug^{1,2}, Alexey Gorovoy¹, Jiri Tuma¹, Odd Reidar Gautun^{2,} Jonathan Nygren^{1,3}, Jenny Button¹, Craig McKenzie¹, Louise M. van Mourik³, Marina Ricci⁴, Sicco Brandsma³, Jacob de Boer³ and Jon E. Johansen ¹-

¹Chiron AS, 7041 Trondheim, Norway

²Norwegian University of Science and Technology, 7491 Trondheim, Norway ³Department of Environment and Health (E&H), Vrije Universiteit, 1081HV Amsterdam ⁴ European Commission, Joint Research Centre, Geel, Belgium

About CPs - What are they?

Complex mixtures of polychlorinated paraffins (CPs)

CPs are subdivided according to their carbon chain length:

- Short chain CPs (SCCPs, C10–13)
- Medium chain CPs (MCCPs, C14–17)
- Long chain CPs (LCCPs, C>17)

Degree of chlorination CPs can vary between 30 and 70 wt%

Why are they important?

See Emerging environmental concern

↔ High volume of production
 (>2 million tonnes per yr)
 ☆ Long-range transport

Rersistence in the environment

Bio-accumulation

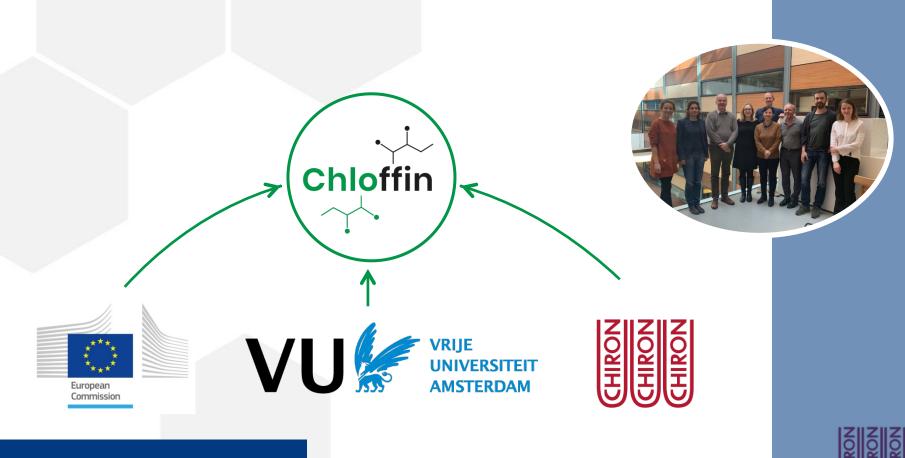
Sectoricity (Carcinogenic)

SCCPs were classified as POPs under the UN Stockholm Convention in 2017.

Placed on several monitoring lists, such as the 2000/60/EC Water Framework Directive.

Toxicity and transformation studies on MCCP and LCCP is scarce.

Current challenges


- No suitable and generally accepted reference standards are commercially available yet.
- Currently available standards differ significantly in chain length and Cl distribution from those seen in technical mixes and the environment.
- CP mixtures used today for quantification are not well characterised nor purity assessed.
- Only semi-quantitative (sum of SCCP, MCCP and LCCP)

Chloffin

The **EUROSTARS CHLOFFIN Project**, new standards for the analysis of chlorinated paraffins

CHLOFFIN consortium

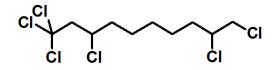
www.chloffin.eu

CHLOFFIN aims

To develop CP standards with defined composition and response factors, which are similar to industrial mixtures.

These standards will enable accurate quantification of CPs as well as helping in distinguishing the various congener groups according to carbon chain length and chlorine content.

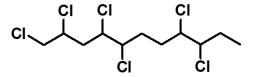
- 40 individual CP standards focus on new generation of CPs
- 8 13C-labelled individual CPs
- 10 congener mixtures
- 1 matrix CRM

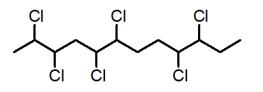


THREE GENERATIONS INDIVIDUAL CPs DEVELOPED

1st Generation – CPs with terminal and geminal chlorines

Three or more chlorines at the end of the chain Will elute differently and are useful internal standards Not present in commercial mixes

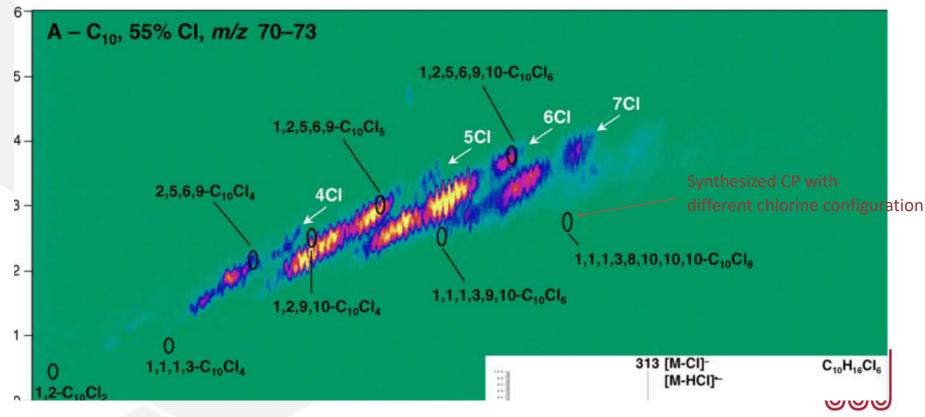

ISO 12010:2019

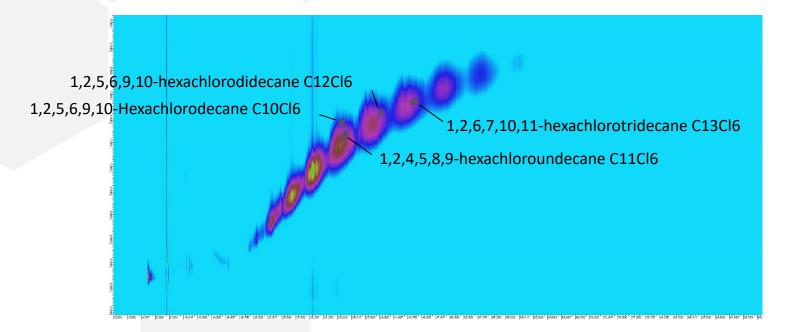

Water quality – Determination of short-chain polychlorinated alkanes (SCCP) in water – Method using gas chromatography-mass spectrometry (GC-MS) and negative-ion chemical ionization (NCI)

2nd Generation – CPs with 1 or 2 terminal chlorine(s)

One or two chlorines at the end of the chain Minor quantities in commercial mixes

3rd Generation – CPs with all chlorines on the chain Most similar to the majority of compounds in the commercial mixes




2005 Jacob de Boer, Pim Leonards & Peter Korytar: Start using GCxGC for CP analysis

P. Korytár et al. / J. Chromatogr. A 1086 (2005) 71-82

GCxGC chromatogram with technical mixture SCCP C10 55% Cl and synthesized single congener standards

2020 Jacob de Boer, Louise van Mourik, (Sicco Brandsma), Chiron & EC JRC Geel: First results of the CHLOFFIN project: 4 SCCP single congener standards – with comparable Chlorine configuration

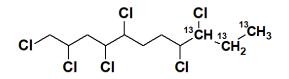
Figure: GCxGC chromatogram with technical mixture SCCP C10-13 55% Cl and first 4 SCCP single congener standards from CHLOFFIN project

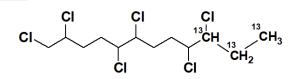
Results – CHLOFFIN and greenREF

• A total of 96 single CP congeners are made available, both SCCPs, MCCPs and LCCPs

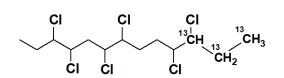
sales@chiron.no

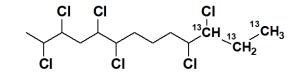
- Totally 22 single chain mixtures are prepared, %Cl: 50-60%
- Totally 8 ¹³C SCCPs, MCCPs and LCCPs were synthesized
- 2 common calibration mixtures for Fish matrix material certification by EU (JRC)




22 Single chain mixtures made

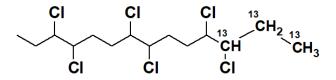
Chain length	Low Chlorine	High Chlorine	
	%CI (NMR)	%Cl (NMR)	
SCCPs			
C9 (vSCCP)	48.5 %	N/A	
C10	52.5 %	58.4 %	
C11	52.3 %	57.6 %	
C12	53.8 %	57.3 %	
C13	45.9%	60.0 %	
MCCPs			
C14	49.2%	58.7 %	
C15	47.7%	59.3%	
C16	51.5%	58.4%	
C17	56.3%	60.3%	
LCCPs			
C18	56.9%	58.4%	
C19	N/A	N/A	IŠ IŠ
C20	38.0%	59.0%	


13C-labelled SCCPs synthesized: C₁₁₋₁₃Cl₆-13C₃

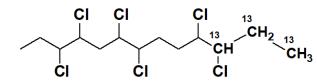


CLF15135.11

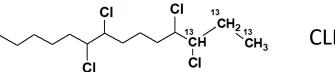
CLF15213.12



CLF15223.13

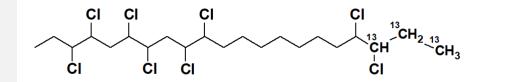

CLF15357.13

13C-labelled MCCPs synthesized: C₁₄₋₁₆Cl₆-1³C₃


CLF15214.14

Cl²

C


CLF15224.15

CLF15215.16

13C-labelled LCCPs synthesized: C₂₁Cl₈-13C₃

13C-labelled CPs synthesis: next steps

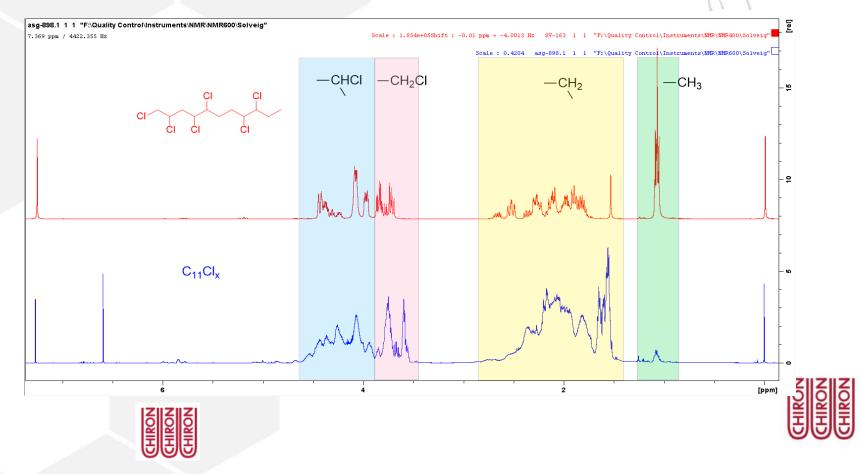
More labelled CPs

More numbers of 13C labelling?

ANALYTICAL METHODS USED

- GC-MS, GC-FID
- High res GC-MS
- LC-MS
- NMR

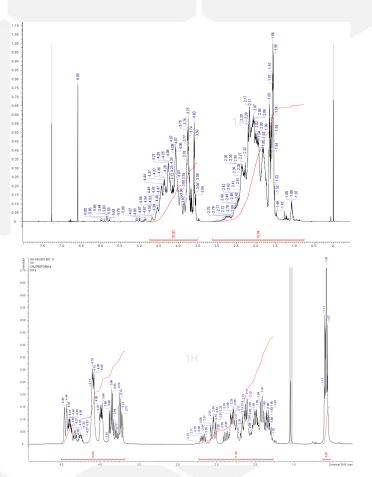
X-ray


- TGA (Water, ash, and solvents)
- Chlorine content
 - by titration
 - by elemental analysis
 - By NMR methods

Chlorine content by NMR

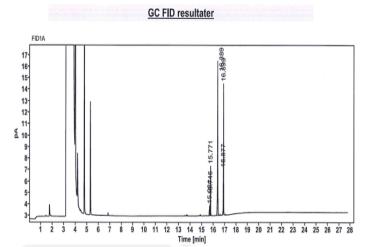
Chlorine content by NMR

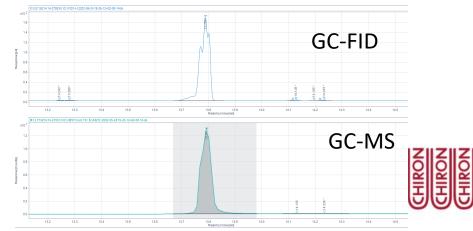
%CI Calculation by NMR area


$$X_{[CH_{3}-,-CH_{2}]} = \frac{A_{[CH_{3}-,-CH_{2}]}}{2\frac{x-2}{x}+3\frac{2}{x}} \qquad y = 2x + 2 - x(A_{rel}[-CHCl-] + A_{rel}[CH_{3}-,-CH_{2}] * 2 * \frac{x-2}{x} + 3 * \frac{2}{x})$$

$$A_{sum} = A_{[-CHCl-]} + X_{[CH_{3}-,-CH_{2}]} \qquad Cl\% = \frac{y * M_{Cl}}{x * M_{c} + (2x + 2 - y) * M_{H} + y * M_{Cl}}$$

$$A_{rel[-CHCl-]} = \frac{A_{[-CHCl-]}}{A_{sum}}$$
$$A_{rel[CH_3-,-CH_2]} = \frac{X_{[CH_3-,-CH_2]}}{A_{sum}}$$

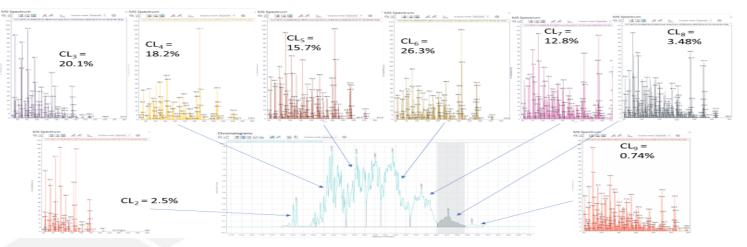

Chlorine content by NMR



C11 Mix			
<u>By NMR area</u>			
A (CH3-/-CH2-)	19,57		
A (-CHCl-)	10		
Х (СН3-/-СН2-)	8,96958333		
Asum	18,9695833		
Arel (-CHCl-)	0,47284029		
Arel (CH3-/-CH2-)	0,47284029		
у	4,28763152		
Cl%	0,50002709		
1,2,4,5,8,9-			
1,2,4,5,8,9-		By Mw	
1,2,4,5,8,9- Hexachlorour		<u>By Mw</u> Mw	362,97
1,2,4,5,8,9- Hexachlorour By NMR area	ndecane		362,97 0,58599884
1,2,4,5,8,9- Hexachlorour <u>By NMR area</u> A (CH3-/-CH2-)	15,69	Mw	
1,2,4,5,8,9- Hexachlorour By NMR area A (CH3-/-CH2-) A (-CHCI-)	15,69 10	Mw	
1,2,4,5,8,9- Hexachlorour By NMR area A (CH3-/-CH2-) A (-CHCl-) X (CH3-/-CH2-)	15,69 10 7,19125	Mw	
1,2,4,5,8,9- Hexachlorour <u>By NMR area</u> A (CH3-/-CH2-) A (-CHCl-) X (CH3-/-CH2-) Asum	15,69 10 7,19125 17,19125	Mw	
1,2,4,5,8,9- Hexachlorour <u>By NMR area</u> A (CH3-/-CH2-) A (-CHCI-) X (CH3-/-CH2-) Asum Arel (-CHCI-)	15,69 10 7,19125 17,19125 0,41830873	Mw	

CLF-5248 Common Calibrant mix of SCCP single congeners

Cat. No	Component	Chromat. Purity (%)	Loss on Drying (%)	Residue on Ignition (%)	Concentration (µg mL ⁻¹)
CLF12284.10	1,2,5,6,9,10-Hexachlorodecane	99.4	0.2	2.6	4
CLF14069.11	1,2,4,5,8,9-Hexachloroundecane	95.9	<0.1	0.8	13
CLF14072.12	1,2,5,6,9,10-Hexachlorododecane	99.4	0.2	0.5	13
CLF14131.13	1,2,6,7,10,11-Hexachlorotridecane	95.1	0.1	1.7	35
CLF14496.13	2,3,6,7,10,11-Hexachlorotridecane	94.2	0.2	0.5	35



CLF5371 Common Calibrant mixture of single chain mixtures

Cat. No	Compound	% Cl NMR	% Cl Mohr's Titration	Estimated Cl distribution GC-MS (extracted ion chromatography)	Chromat. Purity (%)	Loss on Drying (%)	Residue on Ignition (%)	Conc. (µg mL-1)
CLF14575.10	Chloroparaffin single chain mixture $C_{10} Cl_2 - Cl_6$	52.5	54.4	<cl4 (2.5%)="" (20.1%),="" (34.0%)="" (39.2%),="" +cl6="" cl4="" cl5="" cl7<br="">(4.1%)</cl4>	99.7 +/- 0.1	0.6	0.6	0.7
CLF14576.11	Chloroparaffin single chain mixture $\rm C_{11} Cl_2\text{-}Cl_6$	52.3	56.5	<cl4 (0.3%)="" (22.8%)="" (29.0%),="" (7.8%),="" +cl6="" cl4="" cl5="" cl7<br="">(25.3%), Cl8 (11.1%), Cl9 (3.0%), Cl10 (0.6 %)</cl4>	99.8 +/- 0.1	1.8	1.8	1.6
CLF15318.12	Chloroparaffin single chain mixture $\rm C_{12} Cl_2\text{-}Cl_6$	53.8	n/a	<cl4 (0.8%)="" (11.9%),="" (22.1%)="" (3.0%)<="" (54.6%),="" (6.7%),="" +cl6="" cl4="" cl5="" cl7="" cl8="" td=""><td>99.9 +/- 0.1</td><td>0.8</td><td>0.8</td><td>1.2</td></cl4>	99.9 +/- 0.1	0.8	0.8	1.2
CLF14577.13	Chloroparaffin single chain mixture $\rm C_{13}~Cl_2-Cl_6$	45.9	46.8	<cl4 (0.3%)="" (12.3%),="" (14.5%),="" (69.4%)="" +cl6="" cl4="" cl5="" cl7<br="">(3.5%)</cl4>	99.8 +/- 0.1	0.4	0.4	2.0
CLF14687.13	Chloroparaffin single chain mixture $\rm C_{13}$ $\rm Cl_{5}\text{-}Cl_{8}$	60.0	60.8	<cl4 (0%),="" (0.4%),="" (1.9%)<="" (41.1%),="" (43.4%),="" (5.8%),="" (7.5%),="" cl10="" cl4="" cl5+cl6="" cl7="" cl8="" cl9="" td=""><td>99.9 +/- 0.1</td><td>0.2</td><td>04</td><td>4.5</td></cl4>	99.9 +/- 0.1	0.2	04	4.5

GC-MS evaluation of single chain CP mixtures

Future work after CHLOFFIN

LCCPs

More 13C-labelled CPs

More labelled CPs

More numbers (>3) 13C labelling?

More mixtures

Any further questions?

Thank you for your attention!

Your quality is our business

Chiron AS |Stiklestadveien 1|N-7041|Trondheim Norway Tel: +47 73874490 |Fax.:+47 73874499|sales@chiron.no| www.chiron.no